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The textbook approach to quan-
tum mechanics involves explicit 
solutions to the Schrödinger 
equation that often lead through 
arcane properties of special 
functions. Virial theorems, sum 
rules, scaling laws, and semiclas-
sical techniques provide insights 
and answers to many interesting 
questions, all without requiring 
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explicit solutions. The (re)inven-
tion of these methods was mo-
tivated by the discovery of 
quarkonium – bound states of 
heavy quarks. I will sketch the 
history of these hadronic atoms 
and show what simple quan-
tum-mechanical arguments 
have taught us about the force 
between quarks.
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Erwin Schrödinger Gastprofessur, UniWien, 1991
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Birthplace of wave mechanics, 1925–6
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Quantization as an Eigenvalue problem→ AdP, 26.01.1926
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(Erste Mitteilung.) 

8 1. In dieser Mitteilung mochte ich zuniichst an dem ein- 
fichsten Fall des (nichtrelativistischen und ungestorten) Wasser- 
stoffatoms zeigen, dafi die iibliche Qnantisierungsvorschrift sich 
(lurch eine andere Forderung ersetzen I&, in der kein Wort 
von ,,ganzen Zahlen" mehr vorkommt. Vielmehr ergibt sich 
dio Qanzzahligkeit auf dieselbe natiirliche Art, wie etwa die 
Ganzzahligkeit der Knotenzahl einer schwingenden Saite. Die 
neue Aufiassung ist verallgemeineruogefihig und rllhrt,, wie ich 
3laub0, sehr tief an das wahre Wesen der Quantenvorschriften. 

Die iibliche Form der letzteren kniipft an die Hami l -  
ton sche partielle Differentialgleicliung am : 

.') N(g, %) = E . 
E s  wird von dieser Qleichung eine Lijsung gesucht, welche 
sich darstellt als Summe von Funktionen je einer einzigen der 
unabhangigen Variablen q. 

Wir ftihren nun far S eine neue unbekannte q~ ein derart, 
cla6 q~ als ein Produkt von eingriffigen Funktionen der einzelnen 
Koordinaten erscheinen wiirde. 

Die Konstante K mu6 aus dimensionellen Granden eingefiihrt 
werden, sie hat die Dimension einer Wirhung. Damit erhalt man 

D. h. wir setzen 
('tj 8 = K l g q J .  

Wir suchen nun nicht eine Lbsnng der Gleichung (1 I ) ,  sondern 
wir stellen folgende Forderung. Gleichung (1') la6t sich bei 
VernachlLssignng der Massenveranderlichkeit Rtets, bei BerUck- 
Richtigung derselben wenigstens dann, wenn es sich um das Ein- 
elektronenproblem handelt, auf die Gestalt bringen: quadratieche −(
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Materiewellen / Matter waves (1926)
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Underlying laws . . . completely known 714

 Quantum Mechanics of Many-Electron Systems.

 By P. A. M. DIRAC, St. John's College, Cambridge.

 (Communicated by R. H. Fowler, F.R.S.-Received March 12, 1929.)

 ? 1. introduction.

 The general theory of quantum mechanics is now almost complete, the

 imperfections that still remain being in connection with the exact fitting in

 of the theory with relativity ideas. These give rise to difficulties only when

 high-speed particles are involved, and are therefore of no importance in the con-

 sideration of atomnic and molecular structure and ordinary chemical reactions,
 in which it is, indeed, usually sufficiently accurate if one neglects relativity

 variation of mass with velocity and assumes only Coulomb forces between the

 various electrons and atomic nuclei. The underlying physical laws necessary

 for the mathematical theory of a large part of physics and the whole of chemistry

 are thus completely known, and the difficulty is only that the exact application
 of these laws leads to equations much too complicated to be soluble. It there-

 fore becomes desirable that approximate practical methods of applying quantum

 mechanics should be developed, which can lead to an explanation of the main

 features of complex atomic systems without too much computation.

 Already before the arrival of quantum mechanics there existed a theory of

 atomic structure, based on Bohr's ideas of quantised orbits, which was fairly

 successful in a wide field. To get agreement with experiment it was found

 necessary to introduce the spin of the electron, giving a doubling in the number

 of orbits of an electron in an atom. With the help of this spin and Pauli's

 exclusion principle, a satisfactory theory of multiplet terms was obtained when

 one made the additional assumption that the electrons in an atom all set them-

 selves with their spins parallel or antiparallel. If s denoted the magnitude of

 the resultant spin angfular momentum, this s was combined vectorially with the

 resultant orbital angular momentum 1 to give a multiplet of multiplicity 2s +1.

 The fact that one had to make this additional assumption was, however, a

 serious disadvantage, as no theoretical reasons to support it could be given.

 It seemed to show that there were large forces coupling the spin vectors of the

 electrons in an atom, much larger forces than could be accounted for as due to

 the interaction of the magnetic moments of the electrons. The position was

 thus that there was empirical evidence in favour of these large forces, but that

 their theoretical nature was quite unknown.

This content downloaded from 131.225.23.169 on Thu, 11 Aug 2016 21:23:04 UTC
All use subject to http://about.jstor.org/terms
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http://www.jstor.org/stable/95222


“Theories . . . Have Been Exploded”

Published: January 11, 1931
Copyright © The New York Times

Published: January 11, 1931
Copyright © The New York Times
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Schrödinger speaks
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November 11, 1974: J/ψ announced

p + Be→ e+e− + X e+e− → hadrons, etc.

Chris Quigg (FNAL) Schrödinger Equation Universität Zürich 24.10.2016 8 / 45



November 21, 1974: e+e− → ψ′
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1973: Perturbation theory for strong interactions?

QCD: 1/αs(Q) = 1/αs(µ) +
33− 2nf

6π
ln (Q/µ)
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Charmonium (cc̄) analogy to Positronium (e+e−)

VOLUME )4, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JANUARY 1975

dation.
p. 3. Aubert et al. , Phys. Bev. Lett. 33, 1404 (1974).
J.-E, Augustin et al. , Phys. Rev. Lett. 33, 1406

(1974)
G. Tarnopolsky, J. Eshelman, M. E. Law, J. Leong,

H. Newman, R. Little, K. Strauch, and R. Wilson, Phys.
Rev. Lett. 32, 432 (1974).

B. Richter, SLAC Report No. SLAC-PUB-1478, 1974
(to be published) .

~B. Aubert et al. , Phys. Bev. Lett. 33, 984 (1974).
J. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255

(1964); S. L. Glashow, J. Hiopoulos, and L. Maiani,
Phys. Rev. D 2, 1285 (1970).

'A related approach to these problems is discussed in

A. De Rujula and S. L. Glashow, Phys. Rev. Lett. 34,
46 (1975) (this issue).

M. Gaillard, B. W. Lee, and J. Rosner, Fermilab
Report No. Pub-74/86-THY, 1974 (to be published).

~T. Appelquist and D. Politzer, Phys. Bev. Lett. 34,
&3 (1975) (this issue) .

S. Weinberg, Phys. Bev. Lett. 19, 1964 (1967).
11A. Salam, in E/epygentayy Particle Physics, edited by

N. Svartholm (Almquist and Wiksell, Stockholm, Swe-
den, 1968).

A. De Rujula, H. Georgi, S. L. Glashow, and H. R.
Quinn, Bev. Mod. Phys. 46, 391 (1974).

T. Eichten «&., to be published.
I thank S. Glashow for this observation.

Heavy Quarks and e+ e Annihilation*

Thomas Appelquist1 and H. David Politzerf
I-yrnan I.aboxatoxy of Physics, Ha~axd University, Cambridge, Massachusetts 02138

{Received 19 November 1974)

The effects of new, heavy quarks are examined in a colored quark-gluon model. The
e+e total cross section scales for energies far above any quark mass. However, it is
much greater than the scaling prediction in a domain about the nominal two-heavy-quark
threshold, despite 0 + - being a weak-coupling problem above 2 GeV. We expect spikes
at the low end of this domain and a broad enhancement at the upper end.

We report some theoretical work on e'e a.nni-
hilation in asymptotically free, colored quark-
gluon models of hadronic matter. Our fundamen-
tal assumption is that in addition to the light
quarks that make up ordinary hadrons, there is
a heavy quark, such as the charmed 6". This has
been suggested in several other contexts' and is
consistent with the observed scaling and success-
ful sum rules of inelastic lepton-hadron scatter-
ing. We argue that at energies well above the
6"(P' threshold ("threshold" and "mass" having
technical definitions which in no way imply the
existence of physical quarks), the total hadronic
cross section scales as in the free-quark model
because of the smallness of the asymptotic effec-
tive coupling. Scaling also holds in a region well
above the A, A. threshold and well below the 6"6"
threshold, with the magnitude set by the light-
quark charges. However, there are large en-
hancements in a finite region above and below the
6"6" threshold. We examine the behavior in this
region and the approach to the asymptotic region
a,bove it.

Consider the Lagrangian —4E""E„,+4(ip -m)%',
where FI ~ is the non-Abelian gauge-covariant
curl; 4 is several quark color multiplets: e.g. ,
+ =6'„n„A.„6',', where i runs over colors; D„ is

' the gauge-covariant derivative; and m is the
quark mass ma.trix. We take the color gauge
symmetry to be exact, giving rise to strong forc-
es at large distances. Hence the gauge fields are
massless, and each quark color multiplet has a
given mass. We imagine m~, m~, and mz to be
small (& 1 GeV) while mq. & 1 GeV.

In renormalizing the theory, we define g in
terms of the two- and three-point functions at
some Euclidean momentum configuration of scale
M. If asymptotic freedom is to explain Bjorken
scaling, then forM=2 GeV, a, =g'/4s must be
small. m is related to the bare mass matrix m,
by m =Zm„where Z is adjusted so that the 6"
propagator has a pole at P'=mq. to any finite or-
der of perturbation theory.

The renormalization-group apparatus implies
that in the one-photon approximation o(e 'e —had-
rons) is of the form o(s, g, m, M) =o(s, g(s), m(s),
s'"), where s is the square of the center-of-mass
energy, g=g[1+g bin(s/M )] '~', and m=m[1+g'5
x in(s/M )]" for small g, with 5 and d positive
group-theoretic constants. In particular, the to-
tal cross section, a function of a single energy,
is governed by g(s). Such is not the case for any
partial rate. If we are interested in a range of
s such that ln(s/M') = 0(1), perturbation theory in

170 C. Quigg, LL. Rosner, Quantum mechanics with applications to quarkonium

suggeststhat the binding force is formidable,but thesuccessof thequarkpartonmodel [8] in describing
hard scatteringprocessesargues that quarks neverthelessbehave within hadronsas if quasi-free.
Although it hasnot beenprovedto yield quarkconfinement,quantumchromodynamics(QCD)t4,the
non-Abeliangaugetheory of quarksinteractingvia masslessvectorquantacalledgluons, promisesto
explain this paradoxical circumstancethrough the property of asymptotic freedomt5.Asymptotic
freedomrefers to the fact that in QCD, the strong interactionbecomesfeeble at large momentum
transfers(shortdistances)sothat quarksareweaklyboundat smallseparations,but feelan increasingly
strongrestoringforceat largeseparations.

On the basis of asymptoticfreedomarguments,it was anticipated[13] that boundstatesof then
conjecturalheavy quarksmight be describedby a nonrelativisticanalog of the bounde~esystem,
positroniumt6.The spectrumof positronium(Ps) is shownschematicallyin fig. 1. The groundstate,a
favoritetextbookexample[16],is split by the hyperfineinteractioninto theJ~= 1~orthopositronium
andJ~= 0 parapositroniumcomponentswith lifetimes that differ by a factor of 1120.We refer to
the hadroniccounterpartof positroniumgenericallyas quarkonium.

At the end of 1974, the t/i/J (3095MeV/c
2) was discovered[17, 18] in experimentsat SLAC and

Brookhaven.It was immediately recognizedas exceptionalbecauseof its tiny decaywidth (67keV),
which may be understood[13] by analogy with the metastabilityof orthopositronium.The ~fi is
composedof a charmedquark and antiquark (cë). In addition to the second-orderelectromagnetic
decaysillustrated in fig. 2(a), two sorts of strongdecaysmay be contemplated.The first of these,

PS

T

(a) 4’ hadrOflSor
GHz C

2’Ii I
~ 3.2ns(Ly-a) 4’

21 S 23P
0 0 ns (2Y) (b) charmed mesons

— . Energetically forbidden

2430A

t40ns (3Y)

1~s1

Q.l3ns(2Y) (c) ‘P hadrons

Fig. 1. A schematicrepresentationof the spectrumof positronium. Fig. 2. (a) Second-orderelectromagneticdecayof 4’. (b) Energetically
Principaldecaymodesareindicated.Hereandelsewherewe shall use forbiddendissociationof 4’ into charmedmesons.(c) Inhibitedstrong
the spectroscopicnotationN

2-~L
1,whereN = n + 1 is theprincipal decayof 4’ into ordinary hadrons.

quantumnumber,n is theradial quantumnumber,S is thespin (0 or
I), L(=S, P.D, F.. . .) deonotestheorbitalangularmomentum1(=0. I.
2, 3, . . .), andJ is thetotal angularmomentum.

t4For a review,seeref. [9].
I~Asymptoticfreedomhasbeenreviewedin ref. [10].For furtherapplicationsseerefs. [111and [12].
t6 For ageneralreview of positronium.see ref. [14].A reviewof hyperfinestructureis given in ref. [15].
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Charmonium spectroscopy
“Culturally determined” potential V (r) = −κ/r + r/a2

VOLUME 34, +UMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUARY 1/75

lated subjects, see, for example, E. S. Abers and B. W.
Lee, Phys. Rep. BC, 1 (1973).

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
A. Salam, in Elementary Particle Physics, edited by
N. Svartholm (Almquist and Wiksell, Stockholm, Swe-
den, 1968).

BM. K. Gaillard and B. W. Lee, Phys. Rev. D 10,

897 (1974).
' C. W. Kim and A. Sato, to be published.
"H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32,

438 (1974); H. Georgi, H. R. Quinn, and S. Weinberg,
Phys. Rev. Lett. 33, 451 (1974); J. C. Pati and A. Sa-
lam, Phys. Bev. D 8, 1240 (1973).
"B.L. Beron et al. , Phys. Bev. Lett. 33, 663 (1974).

Spectroscopy of the New Mesons*

Thomas Appelquist, j A. De Rujula, and H. David Politzerf.
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02188

and

S. I . Glashow0
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received ll. December 1974)

The interpretation of the narrow boson resonances at 3.1 and 3.7 GeV as charmed
quark-antiquark bound states implies the existence of other states, Some of these should
be copiously produced in the radiative decays of the 3.7-GeV resonance. We estimate
the masses and decay rates of these states and emphasize the importance of y-ray spec-
troscopy.

Two earlier papers" present our case that the
recently discovered" and confirmed' resonance
at 3.105 GeV is the ground state of a charmed
quark bound to its antiquark, by colored gauge
gluons: orthocharmonium I. More recently, a
second state at 3.695 GeV has been reported'
with an estimated width of 0.5-2.7 MeV and a
partial decay rate -2 keV into e e . We inter-
pret this state as an 8-wave radial excitation,
orthocha. rmonium II, with J =1 and I =0
Here are three indications of the correctness of
our interpretation: (1) Much of the time, ortho-
charmonium II decays into orthocharmonium I
and two pions. This behavior suggests that ortho-
charmonium II is an excited state of orthochar-
monium I.' (2) The leptonic width of orthochar-
monium II is about half that of orthocharmonium
I, not unexpected for an excited state whose wave
function at the origin is smaller. (3) Qrthochar-
monium II is not seen in the Brookhaven National
I.aboratory-Massachusetts Institute of Technol-
ogy experiment. ' In a thermodynamic model, '
the production cross section of a hadron of 3.7
GeV is suppressed by -10 ' relative to that of a
hadron of 3.1 GeV. Moreover, the leptonic branch-
ing ratio of orthocharmonium D is smaller than
that of orthocharmonium I by a factor of 10.

We predict the existence of other states of
charmonium with masses less than 3.7 GeV, a

Mass (GeV)

37— ORTHO jT.

RA E
i
I

)

3.5—

3.4—

3.0— )( PARA I

p
++ )++p++
7 7

JPC

FIG. 1. Masses and radiative transitions of charmo-
nlum.

VOLUME 34, NUMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUARY 1975

27t de-excitation of paracharmonium II.
4The value of e = 0.26 at 3.1 GeV was obtained in

Ref. 1 from the leptonic branching ratio of orthochar-
monium I. Asymptotic freedom reduces this value to
0.22 at 3.7 GeV.

' E. Eichten et al. , Phys. Hev. Lett. 34, 369 (&975)
(this issue). As pointed out by these authors in the
transition orthocharmonium II paracharmonium I
+y, the orthogonality of the wave functions may make
our upper limit a gross overestimate.

Spectrum of Charmed Quark-Antiquark Bound States*

E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yang
Laboratory of Nuclear Studies, Cornell University, 1tkaca, Nero Y'ork 14858

(Received 17 December 1974)

The discovery of narrow resonances at 3.1 and 3.7 GeV and their interpretation as
charmed quark-antiquark bound states suggest additional narrow states between 3.0 and
4.3 GeV. A model which incorporates quark confinement is used to determine the quan-
tum numbers and estimate masses and decay widths of these states. Their existence
should be revealed by y-ray transitions among them

Recently two astonishingly narrow resonances
have been discovered" at 3.105 and 3.695 GeV.
In our view the most plausible explanation of this
phenomenon is that of Appelquist and Politzer,
to wit, that they are cc-bound states of charmed
quarks c which lie below the threshold I, for
the production of a pair of charmed hadrons. " Be-
cause of its similarity to positronium this sys-
tem has been called charmonium. 3 This note is
devoted to the spectrum of charmonium. ' Many
of the phenomena that we shall discuss are ac-
cessible to existing experimental techniques.

If the strong interactions are described by an
asymptotically free theory, one may hope' that
the short-distance structure of charmonium (in
particular, its decay into leptons, and probably
also hadrons) is adequately described by pertur-
bation theory in terms of a small "running" cou-
pling constant. In this regime the cV interaction
would be Coulombic, with a small strong "fine-
structure" constant n, . At larger cV separation,
on the other hand, there are rather compelling
arguments that gauge theories provide for quark
confinement. '

If a, is small and the observed levels do not
lie far below the threshold M, , nonrelativistic
quantum mechanics should provide a sound zeroth-
order guide. Given' the sizable electronic widths
I", of P(3695) and $(3105), it is naturals to assign
them to the states 2'S, and 1'S„respectively.
This being said, it is at once clear that there
should be other levels below M, , for any confin-
ing potential will raise" the 2S Coulomb level
above its previously degenerate partner 2P. One

p(1 sSr=0) ~ 3 1 2 I' (3105)
q(2'S; r = 0) S.V I', (S695) (2)

in contrast to Ref. 8 for a Coulomb field. " In

analogy with electrodynamics there must also be
spin-spin, spin-orbit, and tensor forces, but
hopefully they play a secondary role. Near M, a
treatment that accounts for coupling to decay
channels is necessary.

We have determined 0, , a, and the charmed-
quark mass m, by solving the wave equation nu-
merically, "and by imposing the constraints
(a) M(2'S) -M(1'S) =0.59 GeV; (b) I', (1'S)=5.5

keV; (c) 1.5 GeVsm, s 2.0 GeV; and (d) 0.1 s o.,
~ 0.4. Constraint (c) is the requirement that the
system be nonrelativistic, and that $(3695) lie
below M, ; naive quark phenomenology would set

must therefore expect a multiplet of narrow I'
states below g(3695), fed from the latter by El
p transitions, and decaying in turn into g(3105).
If 3.7 GeV is not too close to M, , bound D states
could also exist.

It goes without saying that many qualitative fea-
tures of the spectrum can be surmized without
resorting to a detailed model. Nevertheless, we
have found it informative to simulate the intri-
cate cV' interaction by a simple potential that in-
corporates both the Coulomb and confinement
forces:

V(r) = —(o./r)ll —( / r)'a]

That the interaction is far from Coulombic fol-
lows from the large 2S-1S mass difference, and
the fact that'
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The classic charmonium states
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June 16, 1977: Upsilon discovery

p + (Cu, Pt)→ µ+µ− + anything
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Υ: From discovery to calibration in dimuons

)2 mass (GeV/c-µ+µ
8 8.5 9 9.5 10 10.5 11 11.5 12

 )2
E

ve
n

ts
 / 

( 
0.

07
 G

eV
/c

0

2000

4000

6000

8000

10000

)2 mass (GeV/c-µ+µ
8 8.5 9 9.5 10 10.5 11 11.5 12

 )2
E

ve
n

ts
 / 

( 
0.

07
 G

eV
/c

0

2000

4000

6000

8000

10000  = 7 TeVsCMS Preliminary,  
-1 = 40 pbintL

| < 1µη|
2 = 67 MeV/cσ

Chris Quigg (FNAL) Schrödinger Equation Universität Zürich 24.10.2016 15 / 45



Υ′ − Υ spacing “same as” ψ′ − J/ψ

E288 M(Υ′)−M(Υ) M(Υ′′)−M(Υ)
Two-level fit 650± 30 MeV

Three-level fit 610± 40 MeV 1000± 120 MeV
M(ψ′)−M(J/ψ) ≈ 590 MeV

Underlying laws not entirely known!

What would ∆E independent of µ imply about interaction?

V (r) = C log r ; ∆E independent of µ
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Schrödinger Equation in 3 dimensions

−~2

2µ
∇2Ψ(r) + [V (r)− E ] Ψ(r) = 0

µ: reduced mass of two-body system
r: relative coordinate

Ψ(r): Schrödinger wave function
V (r): interaction potential

E : energy eigenvalue

For a central potential V (r) = V (r), separate

Ψ(r) = R(r)Y`m(θ, φ)

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
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Radial Equation

− ~2

2µ

(
d2

dr 2
+

2

r

d

dr

)
R(r)−

[
E − V (r)− `(` + 1)~2

2µr 2

]
R(r) = 0

Introduce reduced radial wave function u(r) ≡ rR(r):

−u′′(r) =
2µ

~2

[
E − V (r)− `(` + 1)~2

2µr 2

]
u(r)

Same form as 1-d Schrödinger eqn., with boundary conditions

u(0) = 0 u′(0) = R(0)

Wave function normalization:∫
d3r |Ψ(r)|2 = 1

∫∞
0
dru(r)2 = 1
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Dependence on mass and coupling strength
Schrödinger equation with potential V (r) = λrν :

~2

2µ
u′′(r) +

[
E − λrν − `(`+ 1)~2/2µr2

]
u(r) = 0

Bring to dimensionless form: 2µ/~2 [λ] = [~−νµ1+ν ] c ≡ 1

Define scaled measure of length ρ ≡ (~2/2µ |λ|) p
r , choose p to eliminate

dependence on µ and λ, set w(ρ) ≡ u(r)

w ′′ =

E ( ~2

2µ |λ|

)−2 p
− 2µ |λ|

~2
sgn (λ)ρν

(
~2

2µ |λ|

)− p (ν+2)

− `(`+ 1)

ρ2

w = 0

Dimensions gone if p = −1/(2 + ν), E =

(
~2

2µ |λ|

)2 p ~2

2µ
ε; [E ] = µ

w ′′(ρ) + [ε− sgn (λ)ρν − `(`+ 1)/ρ2]w(ρ) = 0
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Implications for level spacings

∆E ∼ (2µ/~2)−ν/(2+ν)|λ|2/(2+ν)

Potential Power ν ∆E ∼
Coulomb −1 µ |λ|2
r−1/2 −1

2
µ1/3|λ|4/3

Logarithmic → 0 Cµ0

Linear 1 µ−1/3|λ|2/3

Harmonic Oscillator 2 µ−1/2|λ|1/2

∞ Square Well →∞ µ−1
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Implications for length scales

L ∼ (2µ |λ|/~2)−1/(2+ν)

Potential Power ν L ∼
Coulomb −1 (µ |λ|)−1

r−1/2 −1
2

(µ |λ|)−2/3

Logarithmic → 0 (µ |λ|)−1/2

Linear 1 (µ |λ|)−1/3

Harmonic Oscillator 2 (µ |λ|)−1/4

∞ Square Well →∞ (µ |λ|)0
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The Virial Theorem & Related Theorems

(Two examples of many)

s-wave (` = 0) wave function at the origin:

|Ψ(0)|2 =
µ

2π~2

〈
dV

dr

〉

Kinetic energy (∀ `):

〈T 〉 = E − 〈V 〉 =

〈
r

2

dV

dr

〉
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Wave function at the origin

−
∫ ∞

0

dr u′(r)u′′(r) =

∫ ∞
0

dr
2µ

~2
[E − V (r)] u(r)u′(r)

u′u′′ = 1
2
(u′2)′ uu′ = 1

2
(u2)′

− u′(r)2

2

∣∣∣∣∞
0

=
2µ

~2
[E − V (r)]

u(r)2

2

∣∣∣∣∞
0

−1

2

2µ

~2

∫ ∞
0

dr [E − V (r)]′ u(r)2

Evaluate, simplify:

u′(0)2 = R(0)2 = 4π |Ψ(0)|2 = −2µ

~2���
���

���
�:0

[E − V (0)]
u(0)2

2
+

2µ

~2

〈
dV

dr

〉

|Ψ(0)|2 =
µ

2π~2

〈
dV

dr

〉
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Wave function at the origin: linear potential

V (r) = λr

|Ψ(0)|2 =
µ

2π~2

〈
dV

dr

〉
−→ µλ

2π~2

. . . same for all s-waves

Far easier than solving the Schrödinger equation,
working out properties of Airy functions!
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Virial Theorem

−
∫ ∞

0

dr r u′(r)u′′(r) =

∫ ∞
0

dr r
2µ

~2
[E − V (r)] u(r)u′(r)

u′u′′ = 1
2
(u′2)′ uu′ = 1

2
(u2)′

LHS:

−1
2
r��

��*
0

u′(r)2

∣∣∣∣∞
0

+ 1
2

∫ ∞
0

dr u′(r)2 = 1
2��

���
�:0

u(r)u′(r)

∣∣∣∣∞
0

= −1
2

∫ ∞
0

dr u(r)u′′(r)

Sch. eqn.: − 1
2

∫ ∞
0

dr
2µ

~2
[E − V (r)] u(r)2 =

1

2

2µ

~2
〈E − V 〉

RHS:
2µ

~2���
��
���

��:0

[E − V (r)]
u(r)2

2

∣∣∣∣∣∣
∞

0

− 1

2

2µ

~2

∫ ∞
0

dr (r [E − V (r)])′ u(r)2

〈E − V 〉 ≡ 〈T 〉 =

〈
r

2

dV

dr

〉
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Virial theorem, 〈T 〉 = 〈(r/2)dV/dr〉: special cases

Power-law: V (r) = λr ν, −2 < ν <∞
Logarithmic: V (r) = C ln (r/r0)

〈T 〉 ≡ E − 〈V 〉 ≡
〈 r

2
νλr ν−1

〉
=
ν

2
〈V 〉 = νE/(2 + ν)

Examples:

Coulomb, ν = −1 : 〈T 〉 = −E = −1
2〈V 〉

Harmonic oscillator, ν = 2 : 〈T 〉 = 〈V 〉 = E/2

Logarithmic: 〈T 〉 =

〈
r

2

C

r

〉
= C/2

General result
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Dualities

Connect bound-state spectra of V (r) = λr ν (ν > 0)
and V̄ (r) = λ̄r ν̄ − 2 < (ν̄ < 0)

Paired Schrödinger equations

~2

2µ
u′′(r) +

[
E − λr ν − `(` + 1)~2

2µr 2

]
u(r) = 0

~2

2µ
v ′′(z) +

[
Ē − λ̄z ν̄ −

¯̀(¯̀+ 1)~2

2µz2

]
v(z) = 0

(ν + 2)(ν̄ + 2) = 4, Ē = λ(ν̄/ν)2, λ̄ = −E (ν̄/ν)2,

z = r 1+ν/2, (¯̀+ 1/2)2ν2 = (` + 1/2)2ν̄2

familiar case Coulomb ⇐⇒ harmonic oscillator (ν, ν̄)
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Priority dispute with Isaac Newton

Grant & Rosner, “Classical orbits in power-law potentials”

Chris Quigg (FNAL) Schrödinger Equation Universität Zürich 24.10.2016 28 / 45

https://global.oup.com/academic/product/newtons-principia-for-the-common-reader-9780198517443?q=chandrasekhar&lang=en&cc=ch
http://scitation.aip.org/content/aapt/journal/ajp/62/4/10.1119/1.17572


Number of narrow 3S1 levels [δ ≡ 2M(Qq̄)− 2M(Q)]

WKB semiclassical quantization condition:∫ rδ

0

dr [2µ(E − V (r))]1/2︸ ︷︷ ︸
local momentum

= (n − 1
4)π~

; (n − 1
4)below δ ∝ √µ for “any” potential

2 narrow ψ s-wave levels =⇒ 3 - 4 narrow Υ s-wave levels
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How n ∝ √µ is realized for ∆E ∝ µ(−1/3,0,1/3)
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|Ψn(0)|2 and the level density Evaluating the
nonrelativistic connection

|Ψn(0)|2 =
µ

2π~2

〈
dV

dr

〉
n

in semiclassical approximation, connect the square of the
s-wave wave function at the origin to the level density:

|Ψn(0)|2 =
(2µ)3/2

4π2~3
E 1/2
n

dEn

dn

(for a nonsingular potential). Result ∀ `

Elementary application
For V (r) = λr , |Ψn(0)|2: independent of n, ; En ∝ n2/3.
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Reconstructing the potential from the spectrum

Semiclassical Inverse Problem

For a monotonically increasing potential, the semiclassical
quantization condition∫ r0

0

dr{2µ[E − V (r)]}1/2 = (n − 1
4)π~

connects the shape of the potential to the level density:

r(V ) =
2~

(2µ)1/2

∫ V

0

dE (V − E )1/2

[
dEn

dn

]−1

cf. Gold’man–Krivchenko, Problems in QM
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https://www.amazon.de/Problems-Quantum-Mechanics-Dover-Physics/dp/0486675270


Designer potentials

Construct a symmetric, one-dimensional potential
that supports N bound states at specified En

. . . out of reflectionless potentials

V (x) = −2κ2 sech2[κ(x − x0)]
. . . single bound state at E = −κ2

N-level reflectionless potential: N-solitary-wave solution to
vt − 6vvx + vxxx = 0 (Korteweg–de Vries)

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat
suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the
vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of
Translation.” — John Scott Russell
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Reflectionless potentials as Korteweg-de Vries solitons:
harmonic oscillator example

In one dimension, specify energy eigenvalues:
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Flavor independence of the QQ̄ interaction

In three dimensions, specify energy eigenvalues
(odd-parity) and wave functions at origin (even-parity)

from charmonium from bottomonium

(cc̄) spectrum on left, (bb̄) on right in each frame
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No degenerate levels in one dimensional QM

(simple Wronskian proof, if no pathologies)

u
i(
x

)
+

E
i

As levels approach, two buckets retreat to ±∞
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Band structure ; periodic potential: 3 levels

u
i(
x

)
+

E
i
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Band structure ; periodic potential: 8 levels
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ψ and Υ narrow levels

Narrow States Below Threshold

– Expected spectrum below threshold: 

• Observed states (labeled) 

• 2 narrow states still unobserved                            18 narrow states still unobserved

Estia Eichten                                                                                                                                                              Fermilab

LHCb 2016                                                                                                                                                          Oct. 14, 2016LHCb 2016                                                                                                                                                          Oct. 14, 2016LHCb 2016                                                                                                                                                          Oct. 14, 20164

S=0 
S=1

J/" (3.097)

#c’(2.984)

" ’ (3.686)

#c’(3.639)

hc(3.525)
!c0(3.415)

!c1(3.511)
!c2(3.555)

"(3D2)(3.823) 
"(3D1)(3.773)

!’(10.023)

#b(9.398)

#b‘(9.999)

!’’(10.355)

!(43S1)(10.579)

!(9.460)

hb(9.899)

hb’(10.260)

!b2(9.912) 
!b1(9.893) 
!b0(9.859)

!’b2(10.268) 
!’b1(10.255) 
!’b0(10.260) !(3D2)(10.164)

!’’b1(10.512)

Eichten

ψ3(3840) 3D3(JPC = 3−−)→ DD̄ [π+π−J/ψ], Γ . few MeV

ηc2(3825) 1D2(JPC = 2−+)→ hadrons, Γ ≈ 110 keV
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Mesons with beauty and charm

LHCb 2016                                                                                                                                                          Oct. 14, 2016LHCb 2016                                                                                                                                                          Oct. 14, 2016

• Bc  -  a rich excitation spectrum 

– 14 narrow states below 
threshold 

– 1S, 2S, 1P, 1D, partial (2P) 

– Hadronic production of Bc 

• color singlet production 
dominates 

• spin triplet dominates singlet

9LHCb 2016                                                                                                                                                          Oct. 14, 2016

Estia Eichten                                                                                                                                                              FermilabEstia Eichten                                                                                                                                                              Fermilab

BCVEGPY2.2  C-H Chang et al 
[arXiv:1507.051176] 

&(11S0)/&(13S1) " &(21S0)/&(23S1)"0.4 
&(23S1)/&(13S1) " 0.25 
&(13P2)/&(13S1) " 0.16 
&(13P1(‘))/&(13S1) " 0.06 
&(13P0)/&(13S1) " 0.02 

EE and C. Quigg (in preparation)

M(Bc ) = 6275.1± 1.0 MeV

LQCD: M(B∗c )− M(Bc ) = 54± 3 MeV

M(B∗c ) = 6329 MeV

M(B∗′c ) = 6892 MeV M(B′c ) = 6860 MeV

14 narrow states expected below flavor threshold Eichten / CQ
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Static potential from (2 + 1)-flavor lattice QCD

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

r1 V(r)

r/r1

β=6.740

β=6.880

β=6.950

β=7.030

β=7.150

β=7.280

β=7.373

β=7.596

β=7.825

Matches phenomenological determinations HotQCD Collaboration
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Quarkonium-associated states

– 7–

Table 2: As in Table 1, but for new states near the first open flavor thresholds in the cc̄ and bb̄
regions, ordered by mass. For X(3872), the values given are based only upon decays to π+π−J/ψ.
Updated from [7] with kind permission, copyright (2011), Springer, and [8] with kind permission
from the authors.

State m (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ) Year Status

X(3872) 3871.68±0.17 < 1.2 1++ B → K (π+π−J/ψ) Belle [42,43] (10.3), BaBar [44] (8.6) 2003 OK

pp̄ → (π+π−J/ψ) + ... CDF [45–47] (np), D0 [48] (5.2)

B → K (ωJ/ψ) Belle [49] (4.3), BaBar [50] (4.9)

B → K (D∗0D
0
) Belle [51,52] (6.4), BaBar [53] (4.9)

B → K (γJ/ψ) Belle [54] (4.0), BaBar [55,56] (3.6),

LHCb [57] (>10)

B → K (γψ(2S)) BaBar [56] (3.5), Belle [54] (0.4),

LHCb [57] (4.4)

pp → (π+π−J/ψ) + ... LHCb [58,59,60] (np)

Zc(3900) 3891.2 ± 3.3 40± 8 1+− Y (4260) → π−(π+J/ψ) BESIII [61]( > 8), Belle [62]( 5.2) 2013 OK

CLEO data [63]( >5)

Y (4260) → π0(π0J/ψ) BESIII [64]( 10.4)

CLEO data [63]( 3.5)

Y (4260) → π−(DD̄∗)+ BESIII [65]( 18)

Y (4260) → π0(DD̄∗)0 BESIII [66]( > 10)

Zc(4020) 4022.9 ± 2.8 7.9± 3.7 1+− Y (4260, 4360) → π−(π+hc) BESIII [67]( 8.9) 2013 NC!

Y (4260, 4360) → π0(π0hc) BESIII [68]( > 5)

Y (4260) → π−(D∗D̄∗)+ BESIII [69]( 10)

Y (4260) → π0(D∗D̄∗)0 BESIII [70]( 5.9)

Zb(10610) 10607.2 ± 2.0 18.4± 2.4 1+− Υ(10860) → π−(π+Υ(1S, 2S, 3S)) Belle [71]( > 10) [72] 2011 NC!

Υ(10860) → π−(π+hb(1P, 2P )) Belle [71]( 16)

Υ(10860) → π0(π0Υ(1S, 2S, 3S)) Belle [73] (6.5)

Υ(10860) → π−(BB̄∗)+ Belle [74]( > 8)

Zb(10650) 10652.2 ± 1.5 11.5± 2.2 1+− Υ(10860) → π−(π+Υ(1S, 2S, 3S)) Belle [71]( >10) 2011 OK

Υ(10860) → π−(π+hb(1P, 2P )) Belle [71]( 16)

Υ(10860) → π−(B∗B̄∗)+ Belle [74]( 6.8)

within an uncertainty of about 1.5 MeV (lowered to ±1.1 MeV

for hb(1P ) in Ref. [34]) .

Belle soon noticed that, for events in the peaks of Fig. 1,

there seemed to be two intermediate charged states nearby. For

example, Fig. 2 shows a Dalitz plot for events restricted to the

Υ(2S) region of π+π− recoil mass, with Υ(2S) → µ+µ−. The
two bands observed in the maximum of the two M [π±Υ(2S)]2

values also appear for Υ(1S), Υ(3S), hb(1P ), and hb(2P ) sam-

ples. Belle fits all subsamples to resonant plus non-resonant

October 1, 2016 19:58
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State m (MeV) Γ (MeV) JPC Process (mode) Experiment (#σ) Year Status

X(3915) 3917.4 ± 2.7 28+10
− 9 0/2++ B → K (ωJ/ψ) Belle [75] (8.1), BaBar [50] (np) 2004 OK

e+e− → e+e−ωJ/ψ Belle [76] (7.7), BaBar [77] (19)

χc2(2P ) 3927.2 ± 2.6 24±6 2++ e+e− → e+e−(DD̄) Belle [78] (5.3), BaBar [79] 2005 OK

X(3940) 3942+9
−8 37+27

−17 ??+ e+e− → J/ψ (DD
∗
) Belle [80] (6.0) 2007 NC!

e+e− → J/ψ (...) Belle [22] (5.0)

Y (4008) 4008+121
− 49 226±97 1−− e+e− → γ(π+π−J/ψ) Belle [81] (7.4) 2007 NC!

Z1(4050)
+ 4051+24

−43 82+51
−55 ? B → K (π+χc1(1P )) Belle [82] (5.0), BaBar [83] (1.1) 2008 NC!

Y (4140) 4145.8 ± 2.6 18± 8 ??+ B+ → K+(φJ/ψ) CDF [84,85] (5.0) 2009 NC!

D0 [86] (3.1), CMS [87] (>5)

Belle [88] (1.9), LHCb [89] (1.4), BaBar [90]

e+e− → e+e− (φJ/ψ) Belle [91] (3.2) 2009 NC!

X(4160) 4156+29
−25 139+113

−65 ??+ e+e− → J/ψ (DD
∗
) Belle [80] (5.5) 2007 NC!

Zc(4200)
+ 4196+35

−32 370+99
−149 1+ B̄0 → K−(J/ψπ+) Belle [92] (6.2) 2014 NC!

Z2(4250)
+ 4248+185

− 45 177+321
− 72 ? B → K (π+χc1(1P )) Belle [82] (5.0), BaBar [83] (2.0) 2008 NC!

Y (4260) 4263+8
−9 95±14 1−− e+e− → γ (π+π−J/ψ) BaBar [93,94] (8.0) 2005 OK

CLEO [95] (5.4), Belle [81] (15)

e+e− → (π+π−J/ψ) CLEO [96] (11)

e+e− → (π0π0J/ψ) CLEO [96] (5.1)

e+e− → (f0(980)J/ψ) BaBar [97] (np), Belle [62] (np)

e+e− → (π−Zc(3900)
+) BESIII [61] (8), Belle [62] (5.2)

e+e− → (γ X(3872)) BESIII [98] (5.3)

Y (4274) 4293 ± 20 35± 16 ??+ B+ → K+(φJ/ψ) CDF [85] (3.1), LHCb [89] (1.0), 2011 NC!

CMS [87] (>3), D0 [86] (np)

X(4350) 4350.6+4.6
−5.1 13.3+18.4

−10.0 0/2++ e+e− → e+e− (φJ/ψ) Belle [91] (3.2) 2009 NC!

Y (4360) 4361 ± 13 74±18 1−− e+e− → γ (π+π−ψ(2S)) BaBar [99,100] (np), Belle [101,102] (8.0) 2007 OK

Z(4430)+ 4458 ± 15 166+37
−32 1+ B̄0 → K−(π+ψ(2S)) Belle [103,104,105] (6.4), BaBar [106] (2.4), 2007 OK

LHCb [107] (13.9)

B̄o → (J/ψπ+)K− Belle [92] (4.0)

X(4630) 4634+ 9
−11 92+41

−32 1−− e+e− → γ (Λ+
c Λ−

c ) Belle [108] (8.2) 2007 NC!

Y (4660) 4664±12 48±15 1−− e+e− → γ (π+π−ψ(2S)) Belle [101,102] (5.8),BaBar [100] (np) 2007 NC!

Υ(10860) 10876 ± 11 55± 28 1−− e+e− → (B
(∗)
(s)

B̄
(∗)
(s)

(π)) PDG [109] (> 10) 1985 OK

e+e− → (ππΥ(1S, 2S, 3S)) Belle [110,71,73,111] (>10)

e+e− → (f0(980)Υ(1S)) Belle [71,73] (>5)

e+e− → (πZb(10610, 10650)) Belle [71,73] (>10)

e+e− → (ηΥ(1S, 2S)) Belle [33] (10)

e+e− → (π+π−Υ(1D)) Belle [112] (9)

e+e− → (π+π−hb(1P, 2P )) Belle [113] (9)

Υ(11020) 10987.5+11.1
−3.3 61.0+9.2

−27.7 1−− e+e− → (B
(∗)
(s)

B̄
(∗)
(s)

(π)) PDG [109] (> 10) 1985 OK

e+e− → (ππΥ(1S, 2S, 3S)) [111] (>10)

e+e− → (π+π−hb(1P, 2P )) Belle [113] (9)

Table 3: As in Table 1, but for new states above the first open flavor thresholds in the cc̄ and
bb̄ regions, ordered by mass. X(3945) and Y (3940) have been subsumed under X(3940) due to
compatible properties. The χc0(3915) is now changed back to X(3915) as explained in the main
text. The state known as Z(3930) appears as the χc2(2P ) in Table 1. In some cases experiment
still allows two JPC values, in which case both appear. See also the reviews in [1–8].
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Quarkonium ⇔ Schrödinger Equation
Using nonrelativistic quantum mechanics embodied in the
Schrödinger Equation, we (work of many hands) have . . .

Made a template for the cc̄ states: 1P levels as key test
Shown flavor-independence of the Q-Q̄ interaction

Characterized the form of the Q-Q̄ interaction
Determined b-quark charge, before B-meson discovery

Created a predictive Quarkonium spectroscopy
Probed Lorentz structure of the confining potential

Built a bridge to quantitative lattice-QCD spectroscopy
Established E1, M1, hadronic transition systematics

Predicted Bc ground state
Adapted and generalized the classic sum rules

Constructed framework for analyzing new “exotic” states
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Quarkonium ⇔ Schrödinger Equation

Pursuing questions raised by the existence of the cc̄ and
bb̄ families, with mb/mc ≈ 3 - 4, we have

Derived many results either new or forgotten for 40 years
Deduced scaling laws (power-law potentials)

Exploited, generalized virial theorem, etc.
Related bound states of singular & confining potentials

Counted narrow levels, semiclassically
Connected |Ψ(0)|2 with level density

Built up phenomenological potentials from KdV solitons
Gained fresh insights into band structure and periodicity

Learned lessons they don’t teach you in school!
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More information

1/4Erwin Schrödinger – Nobel Prize in Physics 1933  www.nobelpreis.uzh.ch/en_schroedinger.html

a versatile and eclectic scholar, who 
was at home in all subjects, but who 
had not yet produced work of any real 
significance – at what was already con-
sidered an advanced age for physicists. 
When he moved with his wife, Annie, 
from Breslau to Zurich in 1921, a Nobel 
Prize must have seemed to him a dis-
tant prospect. Schrödinger, whom his 
biographer Walter J. Moore described 
as a “brilliant only child, occasionally 
led astray by intellectual exuberance,” 
suffered from his lack of success and 
recognition. And his position as chair 
at the University confronted him with 
a most daunting legacy: He followed 
in the formidable footsteps of none less 
than Albert Einstein, Peter Debye, and 
Max von Laue – all subsequent Nobel 
laureates. Nonetheless, Schrödinger 
would go on to spend six years in 
Zurich, a time in which he ultimately 
revolutionized physics.

First, however, he had to recover his 
strength. When he arrived in Zurich, 
he was exhausted, both physically and 
mentally: “I was so worn out that I was 
incapable of intelligent thought,” he 
later wrote to Wolfgang Pauli. The new 
professor blamed this on the stress of 
moving, the “constant decisions about 
his own future,” and the negotiations 
over his appointment, the latter of which 
he was not cut out for, as he noted.

With the move to Zurich, Schrö- 
dinger left behind him a Germany 
shattered by war and still haunted 
by hunger and misery. And he was 
freed from his financial worries: Un-
like his illustrious predecessors, he 

was granted not merely an associate 
professorship, but full tenure. The 
Schrödingers took a spacious apart-
ment, appropriate to their status, at 
Huttenstrasse 9 in Zürich-Oberstrass. 

In addition to exhaustion, Schrö-
dinger had also brought with him from 
Germany a dangerous and insidious 
illness. Hardly had he begun lecturing 
when he was forced by severe bron-
chitis to take a break. His respiratory 
troubles lasted the whole winter. Fi-
nally, a mild pulmonary tuberculosis 
was diagnosed and rest prescribed. 
Thus it came that, in 1922, Erwin 
Schrödinger withdrew to the holiday 

and health resort of Arosa, a place that 
would prove to be steeped in destiny. 
He stayed there for nine months, 
cared for devotedly by his wife. The  
high-altitude cure was successful, the 
symptoms disappeared, and at the be-
ginning of November Schrödinger was 
back in Zurich and teaching again. He 
was able to work, but tired quickly. In 
Arosa, he had written two articles, one 
of which, “Über eine bemerkenswerte 
Eigenschaft der Quantenbahnen eines 
einzelnen Elektrons” (On a notable 
property of the quantum orbits of a 
single electron), in Walter J. Moore’s 
words, could “well be described as an 
original breakthrough into a new era.” 

Nobel Prize in Physics 1933 “for the discovery 

of new productive forms of atomic theory” 
 

* 12 August 1887 in Vienna-Erdberg 

† 4 January 1961 in Vienna
 
 
1921–1927 Professor of Theoretical Physics at 

the University of Zurich

Erwin Schrödinger
Nobel Prize in Physics 1933 

Alpine Air and  
the Wave Equation
When Erwin Schrödinger was ap-
pointed to the chair for theoretical 
physics at the University of Zurich in 
the fall of 1921 – a position that had 
been vacant since 1914 – no one im-
agined that six years later he would 
leave the University and the city hailed 
as a genius by luminary figures such as 
Albert Einstein and Max Planck, and 
celebrated as a star.

Schrödinger arrived in Zurich aged 
34. Born in Vienna, he was regarded as 

“Schrödinger was a brilliant only 
child, occasionally led astray by 
intellectual exuberance.” 

Walter J. Moore

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to
Biographical Memoirs of Fellows of the Royal Society.

www.jstor.org
®
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Celebrating Quarkonium:  
The First Forty Years
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TABLE II. Sensitivity of resonance parameters to

continuum slope. Continuum subtraction of Eq. (1) but
with b varied by + 2(T. Errors are statistical only.

O
c 0.2

~ o.o t bI blab

9 l0
mass (GeV}

Y M( (GeV)
Bdo/dy(„-& (pb}
~, (Gev)
Bdo/dy I -g (pb)
~3 (GeV)
Bdo/dy / ~ -o (pb)
per degree of
freedom

9.40 + 0.013
0.18+0.01
10.00 ~ 0.04
0.068 + 0.007
10.43 +0.12
0.014+0.006
14.1/16

9.40 + 0.014
0.17+ 0.01
10.01~ 0.04
0.061+0.007
10.38+0.16
0.008 + 0.007
15.4/16

b = 0.977 GeV 5 = 0.929 GeV

FIG. 2. Excess of the data over the continuum fit of
Eq. (1). Errors shown are statistical only. The solid
curve is the three-peak fit; the dashed curve is the
two-peak fit.

TABLE I. Resonance fit parameters. Continuum
subtraction is given by Eq. (1). Errors are statistical
only.

2 peak 3 peak

Y m, (GeV)
Bda/dye o (pb)

Y m, (GeV)
Bdo./dye~ 0 (pb)
M3 (GeV)
Bdo/dyj, , (pb)

y2 per degree of
freedom

9.41+ 0.013
0.18+0.01
10.06 + 0.03
0.069 + 0.006

19.9/18

9.40 + 0.013
0.18+ 0.01
10.01+0.04
0.065+ 0.007
10.40 + 0.12
0.011+0.007
14.2/16

cise form of the continuum. The first test is to
vary the slope parameter, b, in Eq. (1). Varia-
tion each way by 20 yields the results given in
Table II. A detailed study has been made of the
error matrix representing correlated uncertain-
ties in the multiparameter fit. The correlations
increase the uncertainties of Tables I and II by
&15%.
Further uncertainties in the results presented

above arise from the fact that the continnum fit
is dominated by the data below 9 GeV. Nature
could provide reasonable departures from Eq. (1)
above this mass. These issues must wait for a
large increase in the number of events, especial-
ly above -11GeV. However, the primary conclu-
sions are independent of these uncertainties and
may be summarized as follows: (i) The structure
contains at least two narrow peaks: Y(9.4) and
Y'(10.0). (ii) The cross section for Y(9.4), (Bda/
dy) i, „is' 0.18+ 0.07 pb/nucleon. (The error in-
cludes our + 25/o absolute normalization uncertain-

ty and. also the estimated uncertainty due to mod-
el dependence of the acceptance calculation. )
(iii) There is evidence for a third peak Y "(10.4)
although this is by no means established.
Examination of the Pr and decay-angle distribu-

tions of these peaks fails to show any gross dif-
ference from adjoining continuum mass bins.
An interesting quantity is the ratio of (Bda/

dy)l, , for Y(9.4) to the continuum cross section
(d'o/dmdy)I, , at M = 9.40 GeV: This is 1.11
~ 0.06 GeV.
Table III presents mass splittings and cross

sections (including systematic errors) under the
two- and three-peak hypotheses and compares
them with theoretical predictions to be discussed
below.
There is a growing literature which relates the

Y to the bound state of a new quark (q) and its an
antiquark (q).' " Eichten and Gottfried' have cal-
culated the energy spacing to be expected from
the potential model used in their accounting for
the energy levels in charmonium. Their potential

V(r) = —~4m, (m, )/r +r/a' (2)
predicts line spacings and leptonic widths. The
level spacings t Table III(a)] suggest that the shape
of the potential may be oversimplified; we note
that M(Y') -M(Y) is remarkably close to M (g')
-M(4)"
Table III(b) summarizes estimates of Bda/dyl, -,

for qq states and ratios of then=2, 3 states to
the ground state. Cascade models (Y produced
as the radiative decay of a heavier P state formed
by gluon amalgamation) and direct production
processes seem to prefer Q = —

& to Q =-', . We
note finally that the ratios in Table III may re-
quire modification due to the discrepancy between
the observed spacing and the universally used

1241

Thanks to my collaborators: Estia Eichten, Jonathan Rosner, Hank Thacker,
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Generalized virial theorems
For general values of `, write

−u′′(r) = Lu(r),

with L ≡ (2µ/~2) [E − V (r)− `(` + 1)~2/2µr 2]

Apply
∫∞

0
dr rqu′(r). Noting that u`(r) = a`r

`+1 as r → 0, we discover

(2` + 1)2a2
`δq,−2` = −

〈
2qrq−1L+ rqL′ + 1

2
q(q − 1)(q − 2)rq−3

〉
for q ≥ −2`.

Coulomb potential, V (r) = − |λ| r−1:

〈r〉 =
3λ

4E
+
`(` + 1)~2

2µ |λ| =
3n2 + `(` + 1)~2

2µ |λ|
Back



Dual power-law potentials (V = λr ν, V̄ = λ̄r ν̄)

2 4 6 8 IO 
I 

-2 

Fig. 6 
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a2
nl and level density ∀`

a2
nl =

(2µEn`/~2)`+
1
2

π[(2` + 1)!!]2

∂(2µEn`/~2)

∂n

Bell & Pasupathy

Back
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